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ABSTRACT 

This study demonstrates the feasibility of a new Modal Positive 

Position Feedback (MPPF) strategy in controlling the vibration of a complex 

flexible structure using a single piezo-electric active structural member. 

The new control strategy generates its control forces by manipulating only 

the modal position signals of the structure to provide a damping action to 

undamped modes. This is in contrast to conventional modal controllers that 

rely in their operation on negative feedback of both the modal position and 

velocity. The proposed strategy is very simple to design and implement as it 

designs the controller at the uncoupled modal level and utilizes simple first 

order filters to achieve the Positive Position Feedback effect. The 4 

4 

performance of the new strategy is enhanced by augmenting it with a "time 

sharing" strategy to share a small number of actuators between larger number 

of modes, 

The effectiveness of the new strategy is validated experimentally on a 

flexible box-type structure that has four bays and its first two bending 

mode are 2.015 and 6.535 Hz respectively. A single piezo-electric actuator is 

utilized as an active structural member to control several transverse bending 

modes of the structure . 
The performance of the active control system is determined in the time 

and the frequency domains . The results are compared with those obtained 
~~~ ~ 
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when using the Independent Modal Space Control (IMSC) of Meirovitch. 

The experimental results suggest the potential of the proposed strategy 

as a viable means for controlling the vibration of large flexible structures 

in real time. 
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1. INTRODUCTION 

During the past few years, several active control systems have been 

successfully implemented to control actively the vibration of a wide variety 

of flexible structures . Such systems relied in their operation on different 

control algorithms that range from the simple velocity feedback control law 

[l-21 to the more imaginative methods such as the Independent Modal Space 

Control (IMSC) of Meirovitch [3-41 and the Positive Position Feedback (PPF) 

of Caughey and Goh [5 ]  . 
Attempts for validating these algorithms relied primarily on using 

voice-coil actuators in one and two way bay trusses at TRW [6] and CALTEEH 

[7]. Recently, piezo-electric actuators have been gaining considerable 

acceptance as means for damping out the structural vibrations because of 

their high stiffness, as compared to the voice-coil actuators, their light 

weight, low power consumption as well as their wide frequency band. Attempts 

to utilize this class of actuators are numerous. Examples of such attempts 

include the work of Forward [8] who used ceramic piezo-actuators to damp out 

two closely spaced orthogonal bending modes in a cylindrical fiberglass mast. 

He utilized, in this regard,.a simple rate damping control law . In 1985 and 

1987, Hubbard and co-investigators [9-101 employed polymeric piezo-actuators 

(PVDF) to control the vibration of aluminum beams. Their control algorithm is 

of the distributed parameter type which is based on the application of 

Lyapunov’s second method as devised by &ilmaM and Bartram [ll]. Crawley and 

De Luis [12-131 demonstrated also the effectiveness of using PZT actuators 

bonded as well as embedded in glass/epoxy and graphite/epoxy beams in 

attenuating the vibration of these composite beams. Simple one mode velocity 

feedback controller was used in these two studies. 

In 1987, Fanson and Caughey utilized pairs of PVDF actuators/sensors to 
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control the vibration of aluminum beams using a Positive Position Feedback 

algorithm [ 141. Recently, Fanson et.al [ 151 incorporated piezo-electric 

pushers , as active members, in the JPL precision structure to control its 

flexible motions using Single Input - Single Output (SISO) control methods. 

In 1988 and 1989 ,Baz and co-workers [16-171 time shared a single 

ceramic piezo-actuator between several modes of vibrations of a flexible 

cantilevered beam using a Modified Independent Modal Space Control (MIMSC) 

method EN]. The MIMSC modifies the IMSC to account for the control 

spillover between the controlled and the uncontrolled modes. The MIMSC 

includes also a time sharing strategy to share small number of actuators 

between larger number of modes. Numerically [ 191 and experimentally [ 171, the 

MIMSC has been shown to have favorable vibration damping characteristics as 

compared to the IMSC and the Pseudo-Inverse (PI) method [17]. However, the 

MIMSC ,as other’ modal control methods, relies in its operation on feeding 

back both the modal position and velocity signals of the controlled modes to 

achieve the required vibration damping . Extraction of these signals from 

physical measurements is both time consuming and computationally intensive 

especially when dealing with large structures. 

Therefore, it is the purpose of this study to demonstrate the 

effectiveness of the new strategy in obtaining stable and damped performance 

by positively feeding back the position signals in a manner similar to 

Caughey and Goh’s Positive Position Feedback algorithm. However, five basic 

differences exist between the present study and that of Caughey and Goh’s. 

First, the position signals are fed back , in this study, through first order 

filters instead of the second order filters of Caughey and Goh. This results 

in reducing the number of parameters required to design the controller to 

one third those needed to design the second order filters. Such 
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simplification makes the selection of the optimal design parameters of the 

first order filters straight forward. This is contrast to the approximate 

and more complex pole-placement approach of Caughey and Goh which is based on 

"neglecting the coupling effect between the controlled and uncontrolled 

modes". Second, the controller is designed completely in the Independent 

Modal Space with the open-loop equations of the system remaining uncoupled 

even after including the modal controller. This is unlike Caughey and Goh's 

method where the originally uncoupled open-loop equations become coupled via 

the control law. Third , the present algorithm can be equally used in 

controlling the vibration and shape of flexible structures without producing 

any steady-state errors. Again this is not the case for the PPF method of 

Caughey and Goh. Fourth, the proposed algorithm results in uniform damping 

for all the modes as compared to Caughey and Goh's method where the damping 

ratio decreases continuously as the modal frequency increases. Fifth, a time 

sharing algorithm is used in the present study to share small number of 

actuators between larger number of modes. This feature was not addressed by 

Caughey and Goh. 

These distinct differences, when coupled with the simplicity of the IMSC 

method, make the new control strategy easy to design and lend it effective in 

controlling the vibration as well as the shape of simple as well as large 

flexible structures. Such features have been successfully demonstrated by 

Baz, Poh and Fedor [20] when the new strategy is utilized to damp out two 

modes of vibration of a 25 cm long cantilevered beam using a single 

piezo-electric bimorph bonded to the beam. 

In the present study the strategy will be extended and utilized to 

has four bays and its suppress the vibration of a box-type structure that 
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first two bending modes occur at 2.015 and 6.075 Hz. A single ceramic 

piezo-electric pusher is used, as an active structural member, to control 

simultaneously several modes of transverse vibrations. 

The concept of the new control strategy and the selection of the optimal 

parameters of the first order filters are presented in section 2. Section 3 

includes t.he experimental evaluation of the strategy along with comparisons 

with the IMSC . Section 4 summarizes the conclusions of this study . 

2, THE MODAL POSITIVE POSITION FEEDBACK METHOD 

2.1. The Concept 

The new method can be clearly understood by considering the block 

diagram shown in Figure (1). In the figure, the controller is used to 

control, in the independent modal space, the ith mode of an undamped flexible 

structure. 

The controller feeds back positively the modal displacement ui through a 

first order filter that has a time constant ti. The filter output Yi is added 

to the desired reference modal displacement us and resulting signal is 

amplified by a proportional controller gain K,. This gain is set equal to 

yio:, to be in a form similar to that of Caughey and Goh’s, where oi is the 

natural frequency of the ith mode. The amplified signal &, i.e. the modal 

control action, is then sent to control the ith mode of the structure. 

Mat hematically, the interaction between the structural mode and the 
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controller can be described as follows : 

(1) The structure i i i  + oi ui = fi = yi 0; ( Yi+ UR) 

The filter 7i 9; + Yi = ui (2) 

2 

2.2 Stability condition 

The above structure-filter system has the following closed-loop transfer 

function 

where s is the Laplace operator. Applying Routh’s stability criterion, 

it can be shown that the system is asymptotically stable for values of yi< 1. 

Accordingly, it is possible for an undamped system to attain asymptotic 

stability by feeding positively its position signal through a simple first 

order filter without the need for any velocity feedback. This constitutes 

the basic premise of the present control algorithm. 

2.3. Zero steady-state condition 

The implementation of such modal control algorithm requires the 

selection of two design parameters which are namely : yi and ri . Actually, 

only the time constant ri of the filter needs to be selected since yi must 

assume a fixed value y’ to eliminate the controller steady state error. This 

can be seen from equations (1) and (2) ,as the system attains its 

steady-state condition at time t = 00 with i i ( t=  0 0 )  = 0 and Pi(t= 00)  = 0. 

Equation (1) yields 

u,(t= 00) = y* [ Yi(t= a)+ UK  ] 

Y,( t=a )  = u , ( t = a )  

and equation (2) gives 
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Eliminating Yi(t= 00)  from equations (4) and (5 )  gives 

(1- y o )  ui(t= 00)  = y' URj (6) 

For steady-state error to be zero, Le. u,(t=oo) = uRj, equation (6) 

requires that y'=O.5. Such a value is < 1 and satisfies accordingly the 

asymptotic stability condition given in section 2.2. This zero steady-state 

condition is not satisfied in Caughey and Goh's method. 

Therefore, the present algorithm can be equally used for shape control 

(uN # 0) and vibration control (uRi = 0 ) . 
2.4. Optimal time constant of filter 

The optimal value of the time constant ti of the filter is 

determined by dividing the numerator and denominator of equation 

zp; to yield the following equation 

ui/ uRj = 0.5 a (s / cy+ 1)/ IS3+ Q s2+ s + 0.5 Q ] 

Q = 1/ ti 0, and H = S/Oi  

The above system has the following characteristic equation 

s 3  + as2 + s + 0.5a = 0 

(7) 

which has the root locus plot shown in Figure (2) for 0 < cy < do. The 

corresponding damping ratio t: of the closed-loop system , as obtained from 

the root locus plot, is shown in Figure (3) as a function of a which is the 

only design parameter of the system. Figure (3) indicates that the damping 

ratio attains a maximum value of 20.07% when a = 1.18. This optimal value is 

very close to those obtained with the PPF method of Caughey and Goh as 

obtained experimentally by Fanson and Caughey [ 121. Therefore, using first 

order filters , instead of the second order filters of Caughey and Goh, has 

simplified the design without compromising the damping characteristics of the 
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Figure (2) - Root locus of the IMSC with PPF Controller. 
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controller. 

More importantly, the presented analysis being applicable to any mode, 

can result in uniform damping for all the modes if all their filters are 

tuned to satisfy the optimal tuning condition ( CY = 1.18) . Accordingly, a 

damping ratio of 20.07% can be maintained for any mode i, that has natural 

frequency oi, by selecting the time constant zi of its filter such that 

zi = 1.18 / oi for i=  l,.., N (9) 

where N is the number of controlled modes. 

Such uniform damping characteristics favors the present algorithm over 

that of Caughey and Goh’s which has modal damping ratios that decrease 

continuously as the modal frequency increases. 

Figure (4) shows a flow chart of the MPPF algorithm. The effectiveness 

of the algorithm in damping the vibration of flexible systems is validated 

experimentally in the what follows. 

3. EXPERIMENTAL VALXDATION OF THE ALGORITHM 

3.1 THE TEST STRUCTURE 

Figure (5 )  shows a photograph of the test structure which is 

constructed to validate the developed control strategy . The structure is 

manufactured from polymethyl methacrylate rods that are 0.3125 cm in 

diameter which have Young’s modulus and density of 4.2 GN/m2 and 3.32 

(gm/cm3) respectively . The structure consists of four bays. The top three 

of which are configured in cubical form with 25 cm long longerons whereas the 

bottom bay, which is anchored to the base of support, is made from shorter 

longerons that are 17.25 cm long. Located in the bottom bay is the active 
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Figure (4) - Flow chart of the IMSC with PPF algorithm. 
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Figure (5 )  - Photograph of the test structure and associated 
controller and instrumentation. 



piezo-electric member as depicted in the photograph. A mechanical shaker is 

placed also in the bottom bay, diagonally opposite to the piezo-electric 

actuator, with its vibration axis coinciding with the longitudinal axis of 

the longeron. In this way the shaker is used to excite the structure 

axially as well as in the transverse flexural modes. The shaker is 

available commercially from Wilcoxon Research, Bethesda, MD 20814, USA 

(model F9/F3). 

The first six modes of vibration of the structure as well as the 

corresponding modal shapes are obtained using the McNeal-Schwendler finite 

element package [21] . The results obtained are summarized in Figure (6). 

The are flexural 

modes in the Y directions, occur at 2.014 and 6.535 Hz respectively. Because 

of the structural symmetry, the second and fifth modes which correspond to 

transverse bending modes in the Z direction, occur also at 2.015 and 6.535 

Hz. The torsion modes are found to be the third and the sixth modes which 

take place at 2.613 and 7.994 Hz respectively. 

figure indicates that the first and fourth modes, which 

Experimental identification of the modes of transverse vibration of the 

structure is carried out using the impact hammer method [22]. The first and 

second modes, in the Y direction, are found to be 2.098 and 6.775 Hz 

respectively. These measurements deviate by 4.11 and 3.67 % from the 

results calculated by the finite element method. 

3.2. The piezo-electric actuator 

The piezo-electric actuator, used in this study to control the 

vibration of the flexible structure, is made from stacked ceramic disks 

housed inside a stainless steel housing that is 16 cm long and 1.25 cm in 

diameter. The actuator is mounted between the structural nodes 1 and 2 as 
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shown in Figure (6). 

listed in Table (1). 

Its main geometrical and physical characteristics are 

The actuator is available commercially from Burleigh 

Max 

Volt 

Instruments 

Force Freq.Response Stiffness Hysteresis 

(N) (Hz 1 (N/W) (%I 
Stroke 

100. 150. 

, Burleigh Park, Fishers, N.Y., 14453, USA ( model PZL - 100) . 

450 250 7 . 0  18 

Table (1) - Main design parameters of the actuator 

Linearity 

1.5 

The actuator is driven by a 386-based microprocessor which generates the 

necessary control action and feeds it through a D/A converter to a power 

amplifier (model PZ-350) which is also available commercially from Burleigh 

Instruments. 

3.3. The sensors 

Three non-contacting sensors are used to monitor the transverse 

vibrations of the structure at three nodal points 4, 5 and 15. The sensors 

are of the inductive type and are available commercially from Veeder-Root 

Co., Hartford, CT 06102, USA (model 576013-190). The signals of the three 

displacement sensors are sampled by the 386 micro-processor which is provided 

with a sampling and control board (model DASH-16) from METRA-BYTE corp., 

Tauton, MA 02780, USA. The board is capable of sampling 16 analog signals at 

a conversion time of 15 ,us with a resolution of 12 bits. 

The physical signals of the sensors are used along with the modal shape 

matrix of the structure, obtained from the finite element analysis, to 

reconstruct the modal displacements of the structure. The dynamic 

condensation technique , of M. Paz [23], is used to reduce the order of the 

structure to third order system which can be described completely in terms 
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of the signals of the three sensors. The micro-processor uses the three 

sampled signals to compute the linear velocities of the structural nodes. 

The computed state variables (y4, ys, yl5, y,, ys and i15) are used to 

calculate the modal coordinates of the flexible system, the mode that has 

the highest modal energy, the corresponding optimal modal control force f i ,  
the physical control force v to be sent to 

the piezo-actuator. The implementation of these calculations , Le. the MPPF 

algorithm , is carried out in real time in 2.52 ms. 

. .  

F, and the necessary voltage 

3.4. Experimental results 

In all the experiments conducted in this study, the structure is 

excited near its second mode of vibration by driving the mechanical shaker 

at a frequency 7Hz . The excitations are maintained for a period of time 

until steady state conditions are attained. The shaker is then turned off 

and the structure is either left to vibrate freely (i.e.uncontrol1ed) or 

under the action of one modal control algorithm or another. The 

uncontrolled performance , shown in Figure (7-a), is used as a datum for 

judging the effectiveness of the different control algorithms. 

Figures (7-b) and (7-c) show the time response of the structure when it 

is controlled by the new algorithm with the piezo-actuator dedicated either 

to the first mode alone or time shared between all the modes respectively. 

It is evident that the former approach is not as effective as the latter in 

damping out the structural vibration. In the time sharing approach, the 

actuator is dedicated to control the mode that has the highest instantaneous 

modal energy. This is not necessarily the lowest mode of vibration as it 
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L 

depends on the nature of the external disturbance. Figure (8) emphasizes 

clearly the fact that the mode that has the highest energy varies with time. 

As the controller suppresses one mode it excites others , at the same time, 

by virtue of the spillover effect. Accordingly, the effectiveness of the 

new algorithm, with its time sharing capability, stems from its 

adaptability to this continuously varying nature of the vibrating system. 

This effectiveness is demonstrated clearly in Figure (9) by considering the 

total modal energy of the structure when the actuator is dedicated to the 

lowest mode or time shared between the modes. It is clear that time sharing 

the single actuator between the modes results in reducing the modal energy 

faster than when it is dedicated to the lowest mode. 

A better insight into the effectiveness of the new algorithm can be 

gained by considering the Fast Fourier Transform (FFT) of the structure 

response . Figure (10) shows the frequency content of the response of the 

uncontrolled structure in comparison with the controlled structure. These 

characteristics are obtained by sampling the position signal of the 

structure at node 15 by a spectrum analyzer and performing on it an FFI' 

analysis. The figure emphasizes the effectiveness of the new algorithm 

particularly when it is provided with the time sharing capability. 

Figure (11) shows comparisons between the time response of the 

uncontrolled structure and when it is controlled by the IMSC of Meirovitch 

and MPPF method. It is evident that the MPPF method is more effective than 

the IMSC method in damping out the vibration of the structure. This is in 

spite of the fact that the IMSC method uses both modal position and velocity 

signals to generate its control action. The IMSC method dedicates , 

however, the actuator to control the first mode of vibration which as 
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mentioned above is not necessarily the mode that has the highest modal 

energy. 

One should point out here that the IMSC method uses , however, less 

energy than the MPPF method to produce its control action as displayed in 

Figure (12). 

4. CONCLUSIONS 

This study has presented a new active control algorithm which is a 

combination of the IMSC and the PPF methods. The algorithm utilizes only 

modal position signals, fed through first order filters, to damp out the 

vibration of undamped flexible structures. The theory behind the algorithm 

is presented and the conditions for asymptotic stability and zero 

steady-state errors are derived. It is shown that uniform damping can be 

achieved for all the controlled modes if the filters are optimally tuned. 

The algorithm is validated experimentally using a single piezo-electric 

actuator to control the vibration of a flexible box-type structure. The 

results obtained indicate its effectiveness in suppressing structural 

vibration particularly when it is provided with time sharing capabilities. 

Comparisons ,carried out between the new algorithm and other modal control 

methods, emphasize its favorable damping characteristics. 

The study demonstrates clearly the simplicity and potential of the 

method as an effective method for controlling large number of vibration 

modes with a smaller number of actuators . These features have important 

practical implications that make the algorithm invaluable means for 

controlling large space structures in real time. 
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APPENDIX : NOMENCLATURE 

S 

Ui 

Ui 

UFti 

V 

Yi 

Yi 

modal force vector (2nxl) 

controlled modal force of the ith mode 

number of nodal points 

Laplace operator 

modal displacement of the ith mode 

modal velocity of the ith mode 

reference modal displacement of the ith mode 

voltage applied across actuator 

linear translation of ith node 

the output of the ith filter 

Greek Symbols 

0 

Yi 

Y’ 

dimensionless time constant of filters 

dimensionless gain of the controller 

dimensionless gain of the controller for zero steady- 

state error ( = 0.5) 

damping ratio of the ith mode ri 

9 i angular deflection of ith node (rad) 

A diagonal matrix of eigenvalues of the system (2nx2n) 

t i  (SI time constant of the ith mode 

ai frequency of the ith mode (rad/s) 
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